Neurokinin release in the rat nucleus of the solitary tract via NMDA and AMPA receptors.

نویسندگان

  • I Colin
  • C Blondeau
  • A Baude
چکیده

Neurokinins (substance P, neurokinin A and neurokinin B) and the neurokinin receptors, the NK1 and NK3 receptors, are largely expressed in the nucleus of the solitary tract (NST) where they are involved in the central regulation of visceral function. Studying the mechanisms that control neurokinin release can provide valuable information concerning the control of autonomic functions subserved by the NST. Glutamate is the principal excitatory neurotransmitter in the NST and the main neurotransmitter of afferent vagal fibers. Neurokinins and glutamate may interact within the NST. In the present study, we have examined the contribution of the N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) subtypes of glutamate receptors on the release of the endogenous neurokinins in the NST. We used internalization of the NK1 or NK3 receptor as an index of endogenous neurokinin release assessed by immunocytochemical visualization of the NK1 or NK3 receptor endocytosis. Experiments were performed in vitro using rat brainstem slices. A first series of experiments were done in order to validate our in vitro preparation. Application of substance P, neurokinin A or neurokinin B induced dose-dependent internalization of NK1 and NK3 receptor. This was blocked by the endocytosis inhibitor, phenylarzine oxide. The NK1 receptor antagonist SR140333 blocked internalization of NK1 receptor induced by the three neurokinins. In addition, the internalization NK1 or NK3 receptor was reversible. These results demonstrate that internalization and recycling mechanisms of NK1 or NK3 receptor were preserved in in vitro brainstem slices. Application of NMDA or AMPA induced internalization of NK1 receptor. This was blocked by the application of SR140333 suggesting that NK1 receptor internalization is due to the binding of endogenous neurokinin released under the effects of NMDA and AMPA. Application of NMDA or AMPA had no effect on NK3 receptor. Application of tetrodotoxin blocked NK1 receptor internalization induced by NMDA, demonstrating that the release of neurokinins is dependent of axon potential propagation. This result excludes the hypothesis of a release on neurokinins via pre-synaptic NMDA receptors located on neurokinin-containing axon terminals. NMDA or AMPA may directly induce neurokinin release in the NST by acting on receptors located on the cell bodies and dendrites of neurokinin-containing neurons. Release of neurokinins may also be the result of a general activation of neuron networks of the NST by NMDA or AMPA. To conclude, our results suggest that glutamate, through activation of post-synaptic NMDA and AMPA receptors, contributes to neurokinin signaling in the NST.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of the AMPA receptors of paragigantocellularis lateralis nucleus in the inflammatory pain modulation in male rat

Introduction: The 17β-estradiol acts as a neurosteroid in the brain and modulates nociception by binding to the estrogen receptors and also by allosteric interaction with other membrane-bound receptors like glutamate receptors. Paragigantocellularis lateralis nucleus (LPGi) is one of the important brain regions implicated in the pain modulation. So, this study was designed to evaluate the ...

متن کامل

Glutamate Receptors in Nucleus Accumbens Can Modulate Canabinoid-Induced Antinociception in Rat’s Basolateral Amygdala

Introduction: It has been shown that administration of WIN55,212-2, a cannabinoid receptor agonist, into the basolateral amygdala (BLA), dose-dependently increases the thermal latency to withdrawal in the tail-.ick test and decreases pain related behaviors in both phases of the formalin test. Recent human and animal imaging data suggest that the nucleus accumbens (NAc) is an important neural su...

متن کامل

Morphine releases glutamate through AMPA receptors in the ventral tegmental area: a microdialysis study in conscious rats

Drug addiction has developed to a social illness. Changes in glutamate transmission have been recorded by the repeated administration of addictive drugs into VTA. In this investigation, In vivo microdialysis was used to study the effects of morphine on glutamate release from the ventral tegmentum area (VTA) in freely moving rats. Rats were anesthetized with chloral hydrate (350 mg/kg, i.p.) and...

متن کامل

MORPHINE RELE ASES GLUTAMATE THROUGH AMPA RECEPTORS IN THE VENTRAL TEGMENTAL AREA: A MICRODIALYSIS STUDY IN CONSCIOUS RATS

In vivo microdialysis was used to study the effects of morphine on glutamate release from the ventral tegmentum area (VTA) in freely moving rats. Intraperitoneal (i.p.) injection of acute and repeated morphine at increasing doses significantly enhanced glutamate release. Only a minor tolerance developed to this dosage of morphine. AP-S (2-amino-5-phosphonovaleric acid, 0.5 mg/kg i.p.), a N...

متن کامل

Morphine releases glutamate through AMPA receptors in the ventral tegmental area: a microdialysis study in conscious rats

Drug addiction has developed to a social illness. Changes in glutamate transmission have been recorded by the repeated administration of addictive drugs into VTA. In this investigation, In vivo microdialysis was used to study the effects of morphine on glutamate release from the ventral tegmentum area (VTA) in freely moving rats. Rats were anesthetized with chloral hydrate (350 mg/kg, i.p.) and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroscience

دوره 115 4  شماره 

صفحات  -

تاریخ انتشار 2002